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Motivation

•Visual-Inertial Odometry (VIO) enables ubiquitous mobility for
mobile robots by providing accurate pose information.

•Recent deep learning approaches for VIO have proven successful.
•Previous work rarely focus on incorporating robust fusion strategies

for dealing with imperfect input sensory data.
•Real issues include camera occlusion or operation in low-light

conditions, measurement noises, temporal or spatial misalignment
between two sensors.

•The learning-based methods are not explicitly modelling the
sources of degradation in real-world usages.

•Naively using all features before fusion will lead to unreliable state
estimation.

Contributions

•A generic framework to learn feature selections from two
modalities, enabling robust and accurate ego-motion estimation

•Our selective sensor fusion masks can be visualised and
interpreted

•A new and complete systematic research on the accuracy and
robustness of deep sensor fusion in presence of corrupted data
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•The hard and soft fusion masks under different conditions
•Left: normal data; middle and right: corrupted data

Neural Visual-Inertial Odometry Framework
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Visual Encoder: extracts visual features from a set of two consecutive monocular images. Inertial Encoder: extracts inertial features from a
sequence of inertial measurements. Feature Fusion: combines the features from two modalities Temporal Modelling: employs LSTMs to model
temporal dependencies. Pose Regression: maps the latent space to pose transformation.

Selective Sensor Fusion - Deep Features Selection
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(a) Soft Fusion 
(Deterministic) (b)  Hard Fusion   (Stochastic)

Soft Fusion (Deterministic):

•Re-weights each feature by conditioning on both the visual and inertial channels

sV = SigmoidV([aV ;aI]) (1)

sI = SigmoidI([aV ;aI]) (2)

Hard Fusion (Stochastic):

•Generates a binary mask that either propagates the feature or blocks it
•Gumbel-Softmax resampling to infer the stochastic layer

sV ∼ p(sV |aV ,aI) = Bernoulli(αV) (3)

sI ∼ p(sI|aV ,aI) = Bernoulli(αI). (4)

Feature Fusion:

•Features are element-wise multiplied with their corresponding soft or hard masks

g(aV ,aI) = [aV � sV ;aI� sI]. (5)

Intuition

•The fusion masks can be viewed as similar to the gain and covariance matrix in
classical filtering methods

Evaluation
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(a) Seq 05 with vision degradations
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(b) Seq 05 with all degradations

The trajectories on the Sequence 05 of KITTI dataset are from the
ground truth (GT), neural vision-only model (VO), neural visual in-
ertial models with direct (VIO), soft (Soft), and hard fusion (Hard).
Left: Seq 05 with vision degradation (10% occlusion, 10% blur, and
10% missing data); Right: Seq 05 with all degradation (5% for each).
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(a) Seq 05 with vision degradations
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(b) Seq 05 with all degradations

Global position errors (Y axis) over travelled distance (X axis).
Left: Seq 05 with vision degradation; Right: Seq 05 with all degra-
dation (5% for each)

0 1 2 3 4

Rotational Velocity 10
-3

0.25

0.3

0.35

0.4

0.45

0.5

0.55

S
e

le
c
te

d
 I

n
e

rt
ia

l 
F

e
a
tu

re
s
 R

a
ti
o

(a) Inertial-Rotation

0 1 2 3 4

Rotational Velocity 10
-3

0.4

0.5

0.6

0.7

0.8

0.9

S
e

le
c
te

d
 V

is
u

a
l 
F

e
a

tu
re

s
 R

a
ti
o

(b) Visual-Rotation
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(c) Inertial-Translation
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(d) Visual-Translation

Interpretability:
•Correlations between the number of inertial/visual features and

amount of rotation/translation
•The inertial features contribute more with rotation rates
•More visual features are selected with increasing linear velocity
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